INDUSTRIAL WEIGHING SOLUTION ${ }^{\top M}$

Cl-600A series

Weighing Indicator

Cautions for Your Safety

Please comply with 'Cautions for Your Safety', which will lead you to use the product safely and properly to prevent any dangerous situations.

- Cautions are divided into 'Warning' and 'Alert', which mean as follows.
- Keep this manual in a place where product users can find out, after finish reading it.

'Warning' means a great possibility led to the death or heavy injury when instructions are violated.

'Alert' means a great possibility led to the injury or material damage when instructions are violated.

! - Warning

Never disassemble, repair or retrofit the
product.
It might exclude the product from the
quality assurance and cause the damage
to devices, electric shock or fire.

Ensure the power plug to be fully
inserted toprevent shaking.
Any instable connection might cause
clectic sparks to set fre.
:---
Poor grounding might cause failure or
electic shock upon electric leak.

Attention
Check the weighing error anytime for
the accurate weighing.
Any use out of the allowed tolerance
for the careless use or other causes
might not ensure the accurate
weighing.
Customer Service : $080-022-0022$
It might damage the product to fail the

accurate weighing. | Find a proper place to attach the rubber |
| :--- |
| pad at the bottom of the indicator, |
| which was shipped together. |

Our Dealers: CAS feels that each of its valued customers should get the best service available. Whether it's the initial installation of our product, maintenance/repair work, or simply answering questions about our products, CAS Corporation and all of its Authorized Dealers are highly trained to assist you with any need regarding CAS products.

Contents

1. Features 9
1-1. Features 9
1-2. Major Functions 9
1-3. Digital Loadcell Interface 10
1-4. Digital and Display 10
1-5. General Specifications 11
1-6. Communication and Option 11
2. Specifications in Appearance. 12
2-1. External Dimension 12
2-2. Front Panel Descriptions 12
2-3. Keyboard 14
2-4. Rear Panel Descriptions 17
3. Installation \& Connection. 18
3-1. Loadcell Connection 18
4. Weight Setup(Calibration) Mode 19
4-1. Weight Setup(Calibration) Menu 20
$4-2$. How to Seal the Indicator(Sealing) 26
5. Weight Mode 27
5-1. Zero function 27
$5-2$. Tare function 28
5-3. Net Weight / Gross Weight Selection 29
5-4. Item Number Change. 30
5-5. Subtotal Print 30
5-6. Total Print. 31
5-7. Selection and Change of Article Information 32
$5-8$. How to Change Item Number 32
5-9. Change in Tare Weight. 33
6. Test Mode 34
7. Set Mode 39
7-1. How to Enter the Set Mode 39
7-2. General Functions 42
7-3. Communication and Function Setting 48
7-4. Print Function Setting 53
7-5. Option Setting 57
7-6. Hardware Set Function 58
7-7. Relay Batching Function 60
8. RS-232C Interface in Detail 73
8-1. RS-232C Port Connection 73
8 -2. How to Connect an Auxiliary Display 74
8-3. How to Connect a Label Printer(DLP) 74
8-4. RS-422 \& 485 Serial Communications 75
9. Serial Data Information 76
9-1. CAS 22Bytes Format 76
9-2. CAS 10Bytes 76
9-3. AND 18Bytes 76
10. Appendix 77
11. Error Message 81
11-1. Error Message from the Weight Setup Mode 81
11-2. Error Message from the Weighing Mode 82

Preface

Thank you very much for purchasing CAS International Indicator.
This produce is characterized by the excellent performance and luxurious features through strict examinations, as well as elaboration for each part under our strict quality control.
CAS Indicator (CI-series) is a product with rich functions and various external interfaces, which is designed to comply well with special requirements in a variety of industrial fields under strong and beautiful designs in appearance.
In addition, it is designed for the user-friendly programs for the easier use of indicator by any user with the built-in message display functions to help users understand the product.
Please use the product right and sufficiently utilize functions of CI-600 series as you read this manual thoroughly before using CI-600 series.

1. Features

1-1. Features

■ High speed, High accuracy

- High speed micro processor adoption
- A/D conversion speed: Maximum 200 times/sed
- Appropriate for weight and measurement system
- Easy operation and various options.
- Simple and prompt Full Digital Calibration
(SPAC ${ }^{\text {TM }}$: Single pass automatic span Calibration)
- RFI/EMI screened
- Watch Dog circuitry (System restoration)
- Weight Back-up
(Weight memory at sudden power failure)

1-2. Main Functions

- Store date, time and calculated data at sudden power failure.
- Various specification on weight conversion speed.
(Digital filter function)
- Various printer connection. (RS-232C Serial printer)
- Tare weight setting with keys.
- Storage of measured times.
- Set Point input \& highest, lowest limit input.
- External input 4 relay.(CI-605)
- External output 6 relay.(CI-605)
- Users can set the desirous max. weight and a division freely.
- Control various external equipment by inner external input/output.
- Print date and time by inner clock.
- Self hardware Test.
- Prompt A/S is available for Test of each part of circuit by module is possible.

1-3. Analog and A/D Conversion

Applied voltage for load cell	$\mathrm{DC} 5 \mathrm{~V}(350 \Omega$ maximum 8 possible connections)
Zeroing range	$0 \sim 2 \mathrm{mV} / \mathrm{V}$
Input sensitivity	$0.5 \mathrm{uV} / \mathrm{D}(\mathrm{OIML}) \mathrm{Ntep}, KS$,
	$0.3 \mathrm{uV} / \mathrm{D}$ (Non OIML, $)$ Ntep, KS
Non-straightness	0.01% Full Scale
A/D internal resolution	$1 / 520,000$
\mathbf{A} / \mathbf{D} external resolution	$1 / 10,000$ (NTEP,)OIML, KS
	$1 / 20,000$ (Non NTEP,)OIML, KS (Possible with the use of sufficient output at $2 \mathrm{mV} / \mathrm{V} \mathrm{L/C)}$
	Maximum 200 rounds/second
Weight setup	Full Digital Calibration: SPACTM (Automatic weight setup at once)

1-4. Digital and Display

Span Calibration	Full Digital Calibration $:$ SPACTM (Single automatic span Calibration)
Display	4.3 " Full Graphic LCD
Sign for status	ZERO, TARE, NET,GROSS, STABLE, HOLD, RX,TX,USB,UNIT(kg, lb, ton)
Division	$\times 1, \times 2, \times 5, \times 10, \times 20, \times 50$
Tare Subtraction	Full capacity
Display Below Zero	"-"Minus

1-5. General Specifications

Power	AC $85 \sim 264 \mathrm{~V}, 50 \sim 60 \mathrm{~Hz}(20 \mathrm{~W})$
Product Size	$192(\mathrm{~W}) \times 199(\mathrm{D}) \times 96(\mathrm{H})$
Temperature Range	$-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$
Fuse Capacity	T2A L250V
Product Weight	Approx. 1.8 kg

1-6. Option Specification

Option-1	Analog V-out (0~10V) or I-out (4~20mA)
Option-2	Relay module Type 1 (4in, 6out)
Option-3	BCD Out
Option-4	Zigbee / Bluetooth
Option-5	RS232 to USB
Option-6	RS232 or RS485
Option-7	Ethernet Card
Option-8	Relay module Type 2 (8in, 10out)

Note 1. Ensure to affirm before purchasing the product since there may be a limitation for the option module that can be used depending on the program version.

2. Specifications in Appearance

2-1. External Dimension (CI-601A, CI-605A)

INSERT PANEL SIZE

2-2. Front Panel Descriptions

Mode Display(Weighing, Calibration, Test, Setting)

[^0]

Display Information

1. 6Digits, Decimal point, sign
2. Unit : kg, lb, ton
3. Message Display : Key input, Error message..
4. Short cut key with function name
5. Set data SP1~4 (Cl-605)
6. External input status (Cl-605)
7. Extemal output status (Cl-605)

2-3. Keyboard
 Function Key

$\begin{gathered} +04 \\ 4 \end{gathered}$	* It sets the weight display near zero point to 0 . (A range of $2 \%, 5 \%, 10 \%, 20 \%$ and 100% can be selected.)
$\underset{1 \rightarrow A \rightarrow a}{\substack{ \\\hline}}$	* Use it to weigh with the tare. * The current weight is memorized as the tare by pressing the key. * Press the key when the load tray is empty to release the tare.
ITEM \Rightarrow	* Use it change to item number or name
MENU Enter	* Use it enter to menu mode.
	* Some functions can be defined to the needs. * Use it for the manual print. (default) (The function set at M2120 in the Set Mode will be operated.)
F2 \hookleftarrow	* Some functions can be defined to the needs. * Use it to fix the shaking weight(default) (The function set at M2121 in the Set Mode will be operated.)
F3 Home	* Some functions can be defined to the needs. * Use it to tare canceling. (default) (The function set at M2122 in the Set Mode will be operated.)

Editor Key

	* It enters $0 \sim 9$ in the input numeric mode * It enters A~Z, symbol in the input alphabet mode
-04\simG/N 	* Use it to cursor up-down
$\underset{\sim}{\text { F2 }} \xrightarrow{\square} \underset{ }{\text { ITEM }}$	* Use it to cursor left-right * Use it to page up-downt
	* Use it to erase privious charactor
$\underset{1 \rightarrow A \rightarrow a}{ }$	* Use it to change input symbol
CLEAR Clear	* Use it to correct any wrong input while entering data. * Use it to enter a decimal point (.) in the calibration mode
MENU Enter	* Use it to save input value.

Multi Function key

Numbers + ITEM	* Use it to change Item number.

2-4. Rear Panel Descriptions

CI-601A, CI-605A

\square LOAD CELL : Port for connection. 4Wires, 6Wires Loadcell
\square COM 1 : Serial Interface Com Port (Option - RS485)
\square COM 2 : Serial Interface Com Port
\square OPTION : When Option in Use, please connect.
\square AC INPUT : AC $100 \sim 240 \mathrm{~V}(50 / 60 \mathrm{~Hz})$ ara available.
FUSE - T2AL250V

3. Installation \& Connection

3-1. Loadcell Connection

Connect the load cell connector to the load cell port which is in the backside of the indicator.

* Connection method

Pin	Function	Color
1	EXC +	Red
2	SEN +	Brown
3	EXC-	White
4	SEN-	Black
5	SIG+	Green
6	SIG-	Blue
7	SHIELD	Shield

Note 1. In case of 4 wires load cell, connect EX+ with SEN+, and connect EX- with SEN-. Note 2. Wire color can be different depending on the load cell's manufacturer or it's model.

* Relationship between the load cell output and input sensitivity.

The input sensitivity of this product is maximum $0.2 \mathrm{uV} /$ digit or more.
The following equation should be satisfied upon the system design.

$0.2 \mathrm{uV} \leq$
 Applied voltage of load cell x Output voltage of load cell x Value of a division
 Rated capacity of load cell x Number of load cell

Example 1) Number of load cell: 4 ea
Rated capacity of load cell: 500 Kg
Rated output of load cell: $2 \mathrm{mV} / \mathrm{V}$
Value of a division: 0.10 Kg
Applied voltage of load cell: $10 \mathrm{~V}(=10,000 \mathrm{mV})$
According to the equation $\rightarrow\left(10000 \mathrm{mV}^{*} 2 \mathrm{mV} * 0.1 \mathrm{Kg}\right) /(500 \mathrm{Kg} * 4)=1 \geq 0.2 \mathrm{uV}$ As the calculated value is greater than 0.2 uV , this weight system design has no problem.

Note 3. It can check the mV / V value in the testmode3

4. Weight Setup (Calibration) Mode

What is the weight setup?
It refers to the calibration to set the displayed value to the actual weight in displaying weights.
How to Access to the Weight Setup Mode
Remove the blot on the rear panel and connect both of CAL pin(check picture below)
And turn on the power supply, you can access to weight setup mode

Press the
F3 key in the weight setup mode to return to weighing mode.

4-1. Weight Setup(Calibration) Menu (CAL1 - CAL7)

CAL 1: Maximum capacity \& Division
CAL 2: Zero \& Span Calibration
CAL 3: Gravity adjustment
CAL 4: Setting Dual range
CAL 5: Trimming Zero \& Span
CAL 6: Direct Calibration
CAL 7: Corner Adjustment

Note 1. When you need to corner adjust, you must be comer adjustment function before the weight calibration

CAL 1(Setting of Maximum Weight and Minimum Division)

Setting Method	Display Part	
1. Using numeric keys ${ }_{\text {a }} \mathbf{0} / \sim \underset{\sim}{\sim}$		
$\begin{aligned} & \text { Enter maximum weight: } \\ & \begin{array}{c\|} \text { MENU } \\ \text { Enter } \end{array}=\text { Set, } \frac{\text { CLEAR }}{\text { Clear }}=\text { Cancel } \end{aligned}$	Max Capa	10
2. Enter minimum division. Push \square when entering a decimal point	Division	0.002

Note 1. If [Cancel] key is pushed with a decimal point set, weight \& division settings are terminated.
Note 2. Minimum division refers to the value of 1 division.

CAL 2(Zero and Span Setting)

CAL 2-1(Set Multi Step and Zero)

Setting Method	Display Part	
Using numeric keys 0 ~ 9		
	MultiCal	1
Set the zero after affiming stability of AD	ZeroAD	5680

Note 1: Multi setting section consists of steps $1 \sim 5$.
A function used to compensate for the load cell output by setting multiple points in some section when actual curve of the load cell is not a straight line as shown below

Note 1 . When the zero setting is completed without any error, it moves to the weight setting without a key being pushed.
Note 2 . When only span setting is desired with the zero set, it moves to
CAL 2-2 by pushing $\stackrel{\text { ITEM }}{\Rightarrow}$ key after multi setting.

CAL 2-2(Enter Weight and Span Settings)

Set the span after affirming stability of AD values.

Note 1. Set the weight of the counterweight to be within the range of $10 \% \sim 100 \%$ of the maximum weight While initially being given as 100% of the maximum weight, enter again the desired weight value if the weight of the counterweight is different from this.
(Accuracy upon Calibration drops below 10\%)
Note 2. Repeat to execute inputting the counterweight value and setting the span
as many times as multi setting steps.
In this case, set a larger value than the previous one for the weight value.

CAL 3(Gravity Calibration)

Setting Method	Display Part	
Enter an initial gravity value.	Produ_Gr	9.7994
$\frac{\text { MENU }}{\text { Enter }}=\text { Set, } \frac{\text { CLEAR }}{\text { Clear }}=\text { Cancel }$		
2. Enter a local gravity value.	Local_Gr	9.7994

Note 1: Use when gravity values are different between the production area and the sales area

CAL 4(Dual Range Setting)

Setting Method	Display Part	
1. Set the use status for dual function $0=$ Not use, $1=$ Use		
2. Using numeric keys $0, \sim 9$	Produ_Gr	9.7994
$\begin{aligned} & \text { Enter dual values. } \\ & \begin{array}{c} \text { MENU } \\ \text { Enter } \end{array}=\text { Set, } \frac{\text { CLEAR }}{\text { Clear }}=\text { Cancel } \end{aligned}$	Local_Gr	9.7994

Note 1: Upon dual setting, the graduation is changed to minimum division * 2
beyond the dual section.

CAL 5(Zero \& Span Adjustment)

Zero Adjustment

Setting Method	Display Part	
$\frac{\text { MENU }}{\text { Enter }}=\text { Set, } \frac{\text { CLEAR }}{\text { Clear }}=\text { Cancel }$	Currzero	-43
Set the Zero after affiming stability of AD value (Zero is changed with reference to the currentAD)	Curr_AD	6649

Span Adjustment

Setting Method	Display Part	
Using numeric keys 0 ,		
Enter the desired factor value for change.	Cur__rac	333320
$\frac{\text { MENU }}{\text { Enter }}=\text { Set, } \frac{\text { CLEAR }}{\text { Clear }}=\text { Cancel }$	Adjs_Fac	XXXXXX

CAL 6(Direct(Equivalent input) Weight Setting)

Setting Method	Display Part	

Note 1. Find zero, span output of the load cell for equivalent input.
Note 2. Set maximum weight and minimum division for CAL-1 before equivalent input.

4-2. How to Seal the Indicator (Sealing)

5. Weighing Mode

5-1. Zero function

	Display Part or Used Keys	Load Plate	Description
Step 1		Empty	State with zero changed
Step 2	-04		Push the zero key
Step 3		Empty	State after performing zero function. Namely, the current weight is designated as '0'kg.

Note 1. Operating range for the zero key is possible between $\pm 2 \% \sim \pm 100 \%$ of the maximum weight.
Operating range for the zero key is designated in Menu No. [2-1-16].
Note 2. Menu No. [2-1-14] designates whether to perform zero function only if the current weight is stabilized or even when it is unstable.

5-2. Tare function

	Display Part or Used Keys	Load Plate	Description
Step 1		Tare Placement	State with tare placed on load plate
Step 2			Push the tare key
Step 3		Tare	State with tare lamp tumed ON and tare registered

5-3. Net Weight/ Gross Weight Selection

	Display Part or Used Keys	Load Plate	Description
Step 1		Tare	Tare Weight: 0.500 kg Gross Weight state is indicated
Step 2	G/N Ω		Push the Gross Weight/net weight switching key
Step 3		Tare	Current net weight value is indicated with net weigh lamp turned ON

Note 1. Push [Tare] key with the load plate empty to cancel the tare.

5-4. Item Number Change

	Display Part or Used Keys	Load Plate	Description
Step 1		0.500kg	Current item number is No. 10.
Step 2			Enter No. 22
Step 3	$\xrightarrow{\text { ITEM }}$		Push the item number key
Step 4	:: WEIGHING MODE 2013-01-09 12:44 HemNo_13: lin W_Count $: 22$ Tare : 0.000 kg		Item number is changed to No. 22

Note 1. Item number may be designated as $0 \sim 99$.

5-5. Subtotal Print

Assume that the item number of the reinforcing bar is '10'.

	Display Part or Used Keys	Load Plate	Description
Step 1			Select the item number code as '10'
Step 2	$\text { 困 } 4$		Push No.4(Subtotal) key "No. 4 key pushed" is displayed in the message window
Step 3	(1) $\underbrace{\substack{\text { figat }}}_{\text {F1 }}$		The subtotal value of Item No. 10 is printed in the designated form

Note 1 . Output form is designated as follows.

SUB-TOTAL	
DATE	2012/ 1/1
TIME	09:30
ID	1
COUNT	5
TOTAL	350.0 kg

Note 1. Subtotal DATA are deleted automatically or manually according to the Menu No.[2-3-09].

5-6. Total Print

Step 1	Display Part or Used Keys	Load Plate	Description
Step 2	5 MNO	Push No.5(Total) key "No.5 key pushed" is displayed in the message window	
	F1	Sum of all subtotal information in Item Nos.0-99 is printed as in the designated form.	

Note 1. Output form is designated as follows.

GRAND-TOTAL	
DATE	2012/ 1/2
TIME	10:30
ID	10
COUNT	123
TOTAL	12350.0 kg

Note 1. Total DATA are deleted automatically or manually according to the Menu No.[2-3-09]

5-7. Selection and Change of Article Information

1) Push

MENU MODE

1	Item No	1	2	Tare	0.000
3	SP1_Data	0.100	4	SP2_Data	0.250
$\mathbf{5}$	SP3_Data	0.400	6	SP4_Data	0.500
7	SP5_Data	0.700	8	SP6_Data	0.700
9	ltem Name				

\Rightarrow Select the item to change an input value for using numeric keys.
\Rightarrow Push
F3 key to change to the previous state(weight weighing state).

5-8. How to Change Item Number

\Rightarrow Push No. 1 key to select the item number and push ${ }_{-\sum_{\text {Enter }}^{\text {MENU }}}$ key
\Rightarrow Input window for item number is displayed
\Rightarrow Enter a desired item number \rightarrow Enter [1][1] and push
\Rightarrow Information on Item No. 11 is displayed, followed by return to the previous state

5-9. Change in Tare Weight

\Rightarrow Push No. 2 key to select the tare weight and push

MENU
Enter
key
\Rightarrow Input window for the tare weight is displayed
\Rightarrow Enter the desired tare value \rightarrow Enter [1][0][0][0] and push $\underset{\text { Enter }}{\substack{\text { MENU }}} \operatorname{key}($ Tare value $=1000)$

Change of set values 1~6

$\Rightarrow \quad$ Push the relevant numeric key to select the item

\Rightarrow Input window for the set value is displayed

MENU MODE

M-3006: SP4_Data

Set Value:

$$
0.100
$$

Init Value:
0
Input Range: 0-999999
$\Rightarrow \quad$ Input the desired value and push
MENU Enter key

6. Test Mode

How to Access to the Test Mode

Push the	MENU	in the weighing mode, by the	key to selec test mode or when	
the powe	turn	d on while pressing ${\underset{A B C}{ }}_{1}^{\text {k }}$		front of the indicator.
Push the	F3	key in the test mode to retur		ghing mode.

Test menu(1-9)

TEST MODE

1. Key Test
2. LCD Test
3. AD Test
4. Communication Test(COM1, COM2)
5. Print Test (COM2)
6. External Input/output Test
7. Option test
8. Memory test
9. RTC test

1. Key Test

Function : Key test		
Used Key	Used Key	
MENU Enter Other Key : Test Key Code Menu $\mathbf{7}$	When you press any key to test, the number and code for the key are displayed on the screen.	

<Key List>

Key	No	Code	Key	No	Code	Key	No	Code
$\begin{gathered} 1 \\ A B C \end{gathered}$	1	1	$\begin{gathered} 8 \\ v w x \end{gathered}$	8	8	G/N	163	163
$\underset{\text { DEF }}{2}$	2	2	$\underset{Y Z}{9}$	9	9		161	161
$\underset{G}{3}$	3	3	0	0	0	F3 Home	27	27
$\underset{\mathrm{JKL}}{4}$	4	4		128	128	CLEAR	48	48
$\begin{gathered} 5 \\ M N O \\ \hline \end{gathered}$	5	5	- ${ }_{-}^{4}$	162	162	MENU Enter	30	30
$\begin{gathered} 6 \\ P Q R \end{gathered}$	6	6	$\xrightarrow{\rightarrow \mathrm{T}_{4}}$	55	55			
$\underset{\text { stu }}{7}$	7	7	F2	160	160			

2.LCD Test

Function : Display Screen Test	
Used Keys	Description
MENU Unter	LCD test proceeds in the order of Red -> White -> Green -> Yellow

3.AD Test

Function : Load Cell Test					
Used Key	Display Part		Description		
MENU Enter	Upper Menu	AD Data	5703		Output value of the Calibrated
:---					
load cell is displayed.					

Note 1. Check whether load cell output values are changed while loading and unloading a weight on the load plate.
If the number is fixed or the number " 0 "is displayed, check again to note whether the load cell is correctly connected
Note 2. When $\stackrel{\text { ITEM }}{\rightarrow}$ key is pushed, the load cell output is displayed in the unit of mV / V

4.Communication Test

Function : Series Communication Test							
Used Keys	Display Part						
	Comm IN_1	1	Comm IN_2	2			
Enter : Upper							
Menu Other Key : Test	Comm Out_1	3	Comm Out_2	3			
Description	The value entered as Port No. 1 is displayed in Communication Input 1 The value entered as Port No. 2 is displayed in Communication Input 2 Simultaneously transmitted to Communication Outputs 1,2 upon key inputting						

Note 1. Execute this test in the state of executing the communication program(Hyper Terminal) in the computer after connecting the series port of the computer and com port on the back face of the indicator.
Note 2. Click' 1 'to affirm whether the computer receives properly.
Note 3. Perform this test after designating the communication speed in advance in Menu No.[2-2-04 or 2-2-09].
5.Print Test

Function : Printer Test		
Used Keys	Display Part	Description
		Print out the following form
MENU	Enter	Upper Menu
	Print	CAS Corporation
		Come And Succeed
		TEL 1577-5578

Note 1. Designate in advance the printer to be used n Menu No. [2-3-01].

6.External Input/ Output Test

Function : External Input/ Output Test		
Used Keys	Display Part	Description
	Ext In	1
MENU Enter	Upper Menu	Ext Out
Other Key : Test	3	Displayed in the external input section when there is an external input. Push No.1~6 key to execute weighing external output

Note 1. This test operates only if Weighing Module Option Card is mounted

7.A-OUT, BCD OUT Test

Function : Option(Analog Out, BCD Out)Test			
Used Keys	Display Part		Description
MENU Enter Other Key : Test	AOUT(\%)	$\mathbf{2 5}$ P	The output level of Aout is raised by 25\% each time the key is pushed.

Note 1. This test operates only if Analog out or BCD out Option Card is mounted.
Note 2. In BCD OUT mode, each line cannot be tested individually but only overall operation checking is possible

8.Memory Test

Function :Memory test		
Used Keys	Display Part	Description
ter :Upper Menu	EEPROM Memory Error Flash Memory Error	If have some errors, display to bad point
	Memory Test O.K	If don't has any error, display to OK

9.RTC Test

Function :RTC test		
Used Keys	Display Part	Description
MENU Enter	Upper Menu	Time

7. Set Mode

7-1. How to Enter the Set Mode

Push the	MENU Enter in the weighing mode, by the	2	key to select set mode
or when the indicator.	power is turned on while pressing	2	key in the front of the

Push the $\begin{gathered}\text { F3 } \\ \text { Home }\end{gathered}$ key in the set mode to return to weighing mode.

M-2200 :
Communication Function

M-2201 : Device ID

M-2202 : Data Transmission Rate M-2203 : COM1 Port Setting M-2204 : COM1 Baudrate M-2205 : COM1 Out Data M-2206 : COM1 Output Format M-2207 : COM1 Output Mode M-2208 : COM2 Port Setting M-2209 : COM2 Baudrate M-2210 : COM2 Out Data M-2211 : COM2 Output Format M-2212 : COM2 Output Mode	

M-2301 : Print Type

\square
\square
\square

	M-2401 : Select Option1
	M-2402 : Select Option2
	M-2403 : Select Option3
	M-2404 : Adjust Zero(Aout)
	M-2405 : Adjust Span(Aout)
	M-2406 : Max Weight(Aout)

M-2500 : Device Function

M-2600 : Batching Function	M-2601 : Set External Key
	M-2602 : Relay Mode
	M-2603 : F_Relay Delay Start time
	M-2604 : F_Relay Delay Operating
	M-2605 : C_Relay Delay Start Time
	M-2606: C_Relay Delay Operating
	M-2607 : NG_Relay Delay Operating

7-2. General Functions

Menu-2101

Function	Set Unit	
Set Range$(1 ~ 3)$	Display Part	Meaning
	- 1_kg	kilogram (kg)
	- 2_Lb	pound (lb)
	- 3 ton	ton

Menu-2102

Function	Set AD Speed		
Set Range (0~4)	Display Part	Meaning	
	Set Value 0	AD Switching Speed 10 times per second	
	Set Value 1	AD Switching Speed 15 times per second	
	Set Value 2	AD Switching Speed 40 times per second	
	Set Value 3	AD Switching Speed 100 times per second	
	Set Value 4	AD Switching Speed 200 times per second	

Menu-2103

Function	Set Digital Filter_1 Buffer	
Set Range $(1 \sim 50)$	Display Part	
	Set Value $: X X$ Initial Value : 10	Setting the number of buffers in the digital filter

Note 1. Set it so as to be suite to the environment (Speed for weight changes may slow down)
Menu-2104

Function	Set Digital Filter_1	Level
Set Range$(1 \sim 50)$	Display Part	Meaning
	Set Value : XX Initial Value: 10	Setting the level of the digital filter (The more stable the weight, the higher the level)

Menu-2105

Function	Set Digital Filter_2 Time Constant	
Set Range (1 ~ 200)	Display Part	Meaning
	Set Value : $X X$ Initial Value: 50	Setting the time constant of the digital fiter (The more stable the weight, the higher the constant)

Note 1. Set it so as to be suite to the environment (Speed for weight changes may slow down)

Menu-2106

Function	Set Stable Range	
	Display Part	Meaning
Set Range (0~99)	- x 0.5 division Initial Value: 1×0.5 division	Stability lamp is tumed ON when weight change is such that the width of change in a given time is within the set value $\times 0.5$ division

Note 1. Function that acknowledges it as the stable state when the width of weight change within a set time does not exceed the set range X 0.5 division.
Note 2 . Weighing stabilization will be made faster by setting the larger number if the environment involves much vibration in the surrounding and by setting the smaller number if there is little vibration.

Menu-2107

Function	Set Automatic Zero Tracking Compensation	
Set Range $(0 \sim 99)$	Display Part	Meaning
	O x 0.5 division Initial Value: 1×0.5 division	Function to compensate for zero when weight change is such that the width of change in a given time is within the set value $\times 0.5$ division

Note 1 . This function automatically calibrates for zero if the weight does not exceed a given range of division within a given time in the zero state.

Ex) When the maximum display division is 120.0 Kg with the value of one division set as 0.05 Kg , provided that the Menu[2-1-07] is set as " 2 ",

Menu-2108

Function	Set Weight Back up	
Set Range$(1,2)$	Display Part	Meaning
	- 1_Weight back up not used	Weight back up function is not used
	- 2_Weight back up used	Weight back up is used (based on operation)

Note 1 . Select the function using numeric keys or arrow keys and push the
[Enter] key for storage
Note 2. As the Back-up state remembers the initial zero state of the weighing instrument upon power failure or power supply turned OFF, the weight value is displayed when the power supply is ON if weighing object is placed in the weighing instrument. If the weighing tare is empty, push the "zero: key to have the zero remembered again.

Menu-2109

Function	Set Hold Type	
Set Range$(1 \sim 4)$	Display Part	Meaning
	- 1 Average Value Hold	Average Hold :Average the wavering weight over a set time and hold upon using the Hold key or extemal inputting
	- 2_Peak Hold	PEAK Hold : Hold the maximum value of the wavering weight
	- 3_Sampling Value Hold	SAMPLING Hold : Hold sampled value of the wavering weight upon using the Hold Key or extemal inputting
	$\begin{aligned} & \text { - 4_Automatic } \\ & \text { Hold } \\ & \hline \end{aligned}$	Auto Peak Hold :Automatically calculate the maximum value of the wavering weight

Note 1. Select the function using numeric keys or arrow keys and push [Enter] key for storage
Note 2. Hold function is not performed if the applied weight value exceeds the maximum weight value during Hold operation.
Note 3. Upon setting No.' 2 , if a load is applied while the load plate is empty, the maximum value of the applied load is automatically calculated and displayed.

Menu-2110

Function	Set Average hold time	
Set Range (01 ~ 99)	Display Part	Meaning
	Initial Value: $30 \times 0.1 \mathrm{Sec}$	Average value within the set value $\times 0.1$ sec is calculated

Menu-2111

Function	Set Hold Canceling Conditions	
Set Range(1~2)	Display Part	Meaning
	- 1_Cancel Hold at zero	Hold is canceled when it becomes zero.
	- 2_Cancel upon entering Hold Key	Hold is canceled when Hold key is entered.

Menu-2112

Function	Set Automatic Hold Starting Conditions	
Set Range $(0,99)$	Display Part	Meaning
	O 1 division Initial Value: 10×1	Hold starts when the weight changes within the set range value $\times 1$ division.

Menu-2113

Function	Set Automatic Hold Canceling Conditions	
Set Range (0~99)	Display Part	Meaning
	$\quad \text { Valu }$	Hold is canceled when the value is changed by more than 00% of the held value.

Menu-2114

Function	Set Ker Operating Conditions (ZERO, TARE Keys Availability)	
Set Range $(1,2)$	Display Part	Meaning
	1_Always Operational	Always in operation
	- 2 Operational when the weight is stable	Operates only if the weight is stable

Menu-2115

Function	Set Zero Key Range			
Set Range $(0 \sim 99)$	Display Part			
	00%			
				Zero key operates up to within $+/-00 \%$ of the maximum
:---:				
weight	\quad	Meaning		
:---				

Menu-2116

Function	Set Tare Key Range	
Set Range $(0 \sim 100)$	Display Part	Meaning
	Initial Value: 100%	Tare key operates up to within $+/-00 \%$ of the maximum weight

Menu-2117

Function	Set Initial Zero Range	
Set Range $(0-99)$	Display Part	Meaning
	00% Initial Value: 10%	Initial zero operates within $+/-00 \%$ of the Gross Weight

Menu-2118

Function	Set Overload Range	
Set Range (0~99)	Display Part	Meaning
	o x 1 Digit Initial Value: 9×1 Digit	Overweight from the next to 0 1 Digit of the maximum weight

Menu-2119

Function	Set the front key input to be allowed.	
Set Range$(0 \sim 1)$	Display Part	Meaning
	$\begin{aligned} & \text { - 1_Use Front } \\ & \text { key } \end{aligned}$	Function key operation is allowed in the scale mode
	$\begin{aligned} & \hline \text { a } 2 \text { _Lock Front } \\ & \text { Key } \end{aligned}$	Function key operation is not allowed in the scale mode

Menu-2120: F1 Key Use Type
Menu-2121: F2 Key Use Type
Menu-2122: F3 Key Use Type

Function	Set Key Use Type	
Set Range(1~18)	Display Part	Meaning
	- 1_Zero Key	F key used as the zero key
	- 2_Total/Net Weight Key	F key used as the total./net weight key
	- 3_Tare Key	F key used as the tare key
	- 4_Subtotal Key	F key used as the subtotal key
	- 5_Total Key	F key used as the total key
	- 6_Clearing Key	F key used as the clearing key
	- 7_PrintKey	F key used as the print key
	- 8_HoldKey	F key used as the hold key
	- 9_Tare Cancelling Key	F key used as the tare cancelling key
	- 10_Step1 Set Value Entering Key	F key used as the step 1 setting key
	- 11_Step2 Set Value Entering Key	F key used as the step 2 setting key
	- 12_Step3 or 1 Fall Key	F key used as the step 3 setting key
	- 13_Step4 or 2 Fall Key	F key as the step 4 setting key
	- 14_Upper Limit Input	F key used as the upper limit input key
	- 15_Lower Limit Input	F key used as the lower limitinput key
	- 16_StartKey	F key used as the start key
	- 17_Stop Key	F key used as the stop key
	- 18_Print Form Key	F key used as the print form key

Note 1. The base setting of F1 key is the Print key.
Note 2. The base setting of F2 key is the Hold key
Note 3. The base setting of F3 key is the Tare Cancelling key.
Menu-2123

Function	Set Near Zero(Print, Relay)	
Set Range $(0 \sim 99)$	Display Part o x 1 Digit Initial Value: 0 x 1 Digit	Up to the set value * 1 Digit is allowed as the zero

7-3. Communication and Function Setting

Menu-2201

Function	Set Device ID		
Set Range $(0 \sim 100)$	Display Part	Meaning	
	Device ID: 00 Initial Value: 0	Desired device ID may be entered.	

Note 1 . This function may be used as the indicator's inherent ID in the COMMAND mode.
Menu-2202

Function	Set Data Transmission Rate	
Set Range	Display Part	Meaning
	Initial Value:	Data are transmitted by the unit of $00 \times 10 \mathrm{~ms}$
	$50 \times 10 \mathrm{~ms}$	

Note 1 . Data are transmitted in real time upon setting at" 0 ".
Menu-2203

Function	Com1 Port Setting	
Set Range$(1 \sim 6)$	Display Part	Meaning
	$\begin{aligned} & \text { - 1_Data_8/Stop_1/ } \\ & \text { Parity_none } \\ & \hline \end{aligned}$	Data Bit 8, Stop Bit 1, Parity Bit : None
	$\begin{aligned} & \text { - 2_Data_7/ Stop_1/ } \\ & \text { Parity_even } \end{aligned}$	Data Bit 7, Stop Bit 1, Parity Bit: Even
	$\begin{aligned} & \text { - 3_Data_7/Stop_1/ } \\ & \text { Parity_odd } \end{aligned}$	Data Bit 7, Stop Bit 1, Parity Bit: Odd
	$\begin{aligned} & \text { - 4_Data_7/Stop_2/ } \\ & \text { Parity_odd } \end{aligned}$	Data Bit 7, Stop Bit 2, Parity Bit: Odd
	$\begin{aligned} & \text { a 5_Data_8/Stop_1/ } \\ & \text { Parity_even } \end{aligned}$	Data Bit 8, Stop Bit 1, Parity Bit: Even
	$\begin{aligned} & \text { - 6_Data_8/Stop_1/ } \\ & \text { Parity_odd } \\ & \hline \end{aligned}$	Data Bit 8, Stop Bit 1, Parity Bit: Odd

Menu-2204

Function	Set COM1 Baud Rate	
Set Range$(1 \sim 7)$	Display Part	Meaning
	- 1_1,200 bps	1,200 bps
	- 2_2,400 bps	2,400 bps
	- 3_4,800 bps	4,800 bps
	-4_9,600 bps	9,600 bps
	- 5_19,200 bps	19,200 bps
	- 6_38,400 bps	38,400 bps
	- 7_57,600 bps	57,600 bps
	- 8_115,200 bps	115,200 bps

Menu-2205

Function	Set Com1 Out Data	
SetRange$(1 \sim 3)$	Display Part	Meaning
	- 1_Displaed Value	Displayed value is transmitted
	- 2_Gross Weight	Gross Weight is transmitted
	- 3_Net Weight	Net weight is transmitted

Menu-2206

Function	Set COM1 Output Format	
Set Range$(1 ~ 3)$	Display Part	Meaning
	-1_CAS 22	22 byte of CAS
	- 2_CAS10	10 byte of CAS
	- 3_AND18	18 byte Format(AND, FINE)

Note 1. Note <Appendix $1>$ for communication format

Menu-2207

Function	Set Com1 Output mode	
Set Range$(1 ~ 8)$	Display Part	Meaning
	- 1 No Data Output	Data is not transmitted
	- 2 Transmit When Print Key is Pushed	Transmitted only if the print key is pushed
	- 3_Transmit in Both Stable/Unstable Cases	Transmitted in both stable/unstable cases (Stream Mode)
	- 4_Transmit Only if Weight Is Stable	Transmitted only if the weight is stable
	a 5_Command Type 1	Command Type 1
	- 6_Command Type 2	Command Type 2
	- 7_Command Type 3	Command Type 3
	- 8_Transmit upon Completion Signal	Transmitted only upon completion signal

Note 1. See Appendices 2, 3, 4 for command types

Menu-2208

Function	Com2 Port Setting(RS232, Print)	
SetRange$(1 \sim 6)$	Display Part	Meaning
	$\begin{aligned} & \text { - 1_Data_8/Stop_1/ } \\ & \text { Parity_none } \\ & \hline \end{aligned}$	Data Bit 8, Stop Bit 1, Parity Bit : None
	$\begin{aligned} & \text { a } 2 \text { Data_7 / Stop_1/ } \\ & \text { Parity_even } \end{aligned}$	Data Bit 7, Stop Bit 1, Parity Bit : Even
	$\begin{aligned} & \text { a 3_Data_7/Stop_1/ } \\ & \text { Parity_odd } \end{aligned}$	Data Bit 7, Stop Bit 1, Parity Bit : Odd
	$\begin{aligned} & \text { a 4_Data_7/Stop_21 } \\ & \text { Parity_odd } \end{aligned}$	Data Bit 7, Stop Bit 2, Parity Bit: Odd
	$\begin{aligned} & \text { a 5_Data_8/Stop_1/ } \\ & \text { Parity_even } \end{aligned}$	Data Bit 8, Stop Bit 1, Parity Bit: Even
	$\begin{aligned} & \text { a 6_Data_8/Stop_1/ } \\ & \text { Parity_odd } \\ & \hline \end{aligned}$	Data Bit 8, Stop Bit 1, Parity Bit: Odd

Menu-2209

Function	Set COM2 Baud Rate	
Set Range$(1 \sim 7)$	Display Part	Meaning
	- 1_1,200 bps	1,200 bps
	- 2_2,400 bps	2,400 bps
	- 3_4,800 bps	4,800 bps
	-4_9,600 bps	9,600 bps
	- 5_19,200 bps	19,200 bps
	- 6_38,400 bps	$38,400 \mathrm{bps}$
	- 7_57,600 bps	57,600 bps
	-8_115,200 bps	115,200 bps

Menu-2210

Function	Set Com2 Out Data	
Set Range$(1 ~ 3)$	Display Part	Meaning
	- 1_Displaed Value	Displayed value is transmitted
	- 2_Gross Weight	Gross Weight is transmitted
	- 3_Net Weight	Net weight is transmitted

Menu-2211

Function	Set COM2 Output Format	
Set Range$(1 \sim 3)$	Display Part	Meaning
	-1_CAS 22	22 byte of CAS
	- 2_CAS10	10 byte of CAS
	- 3_AND18	18 byte Format(AND, FINE)

Note 1. See <Appendix $1>$ for communication format

Menu-2212

Function	Set Com2 Output mode	
Set Range$(1 ~ 8)$	Display Part	Meaning
	- 1 No Data Output	Data is not transmitted
	- 2 Transmit When Print Key is Pushed	Transmitted only if the print key is pushed
	- 3 Transmit in Both Stable/Unstable Cases	Transmitted in both stable/unstable cases (Stream Mode)
	- 4_Transmit Only if Weight Is Stable	Transmitted only if the weight is stable
	- 5_Command Type 1	Command Type 1
	- 6_Command Type 2	Command Type 2
	- 7_Command Type 3	Command Type 3
	- 8_Transmit upon Completion Signal	Transmitted only upon completion signal

Note 1. See Appendices 2, 3, 4 for command types

7-4. Print Function Setting

Menu-2301

Function	Set Printer Type	
Set Range$(1 \sim 6)$	Display Part	Meaning
	- 1 Printer Not Used	Printer is not used
	- 2_DEP_CAS Ticket Printer	CAS Ticket Print Standard Type
	- 3 DLP Label Printer	CAS Label Print Standard Type
	- 4 BP Label Printer	CAS BP Label Printer
	$\begin{aligned} & \text { - 5_CP7100/7200 } \\ & \text { (ENG) } \end{aligned}$	CP7100/7200 English
	$\begin{aligned} & \text { - 6_CP7100/7200 } \\ & \text { (KOR) } \end{aligned}$	CP7100/7200 Korean

Menu-2302

Function	Set Print Form	
Set Range$(1 \sim 8)$	Display Part	Meaning
	- 1 Print Form 1/BP Form1	Print Form 1 (Date, Time, Serial No., Item No., Net Weight)
	- 2 Print Form 2/BP Form2	Print Form 2 (Date, Time, Weighing No., Net Weight)
	- 3_Print Form_ 3/BP Form3	Print Form 3 (Date, Time, Gross Weight, Tare, Net Weight)
	- 4_Print Form_ 4/BP Form4	Print Form 4 (Date, Time, Net Weight)
	- 5_Print Form_ 5/BP Form5	Print Form 5 (Date, Time, Item No., Net Weight)
	- 6_Print Form_ 6/BP Form6	Print Form 6 (Date, Time, Serial No., Net Weight)
	- 7_BP Form7	BP Print Form7
	- 8_BP Form8	BP Print Form 8

［ Form2 】
Date，Time，
Weighing No．，Net Weight

2009．07．07TUE］ $12: 30: 46$		
No．	1	50.0 kg
No．	2	100.0 kg
No．	3	200.5 kg

［ Form 3 】
Date，Time，
Gross Weight，Tare，Net Weight

2009．07．07TUE $12: 30: 46$	
Gross：	1000.0 kg
Tare ：	0.0 kg
Net ：	1000.0 kg
Gross：	2000.0 kg
Tare ：	500.0 kg
Net ：	1500.0 kg

［ Form 4 】
Date，Time， NetWeight
［ Form5】
Date，Time， Item No．，Net Weight

2009．07．07TUE：		
I2：30：46		
ID＿1，	Net：	50.0 kg
ID＿12，	Net：	100.0 kg
ID＿19，	Net：	200.5 kg

［ Form 6 】
Date，Time， Serial No．，Net Weight

\square CAS DLP Protocol

Parameter	Description
V00	Gross Weight（8 bytes）
V01	Tare Value（8 bytes）
V02	Net Weight（8 bytes）
V03	Barcode（net weight）（8 bytes）
V04	Count value in count mode（8 bytes）
V05	Percent value in percent mode（8 bytes）

Can＇t print weight data，count value，percent value same time
\square CAS DLP(BP-DT-4) Protocol

Parameter	Description	Data Length
V00	Net Weight	7 byte
V01	Unit (kg)	2 byte
V02	Gross Weight	7 byte
V03	Tare value	7 byte
V04	Date	10 byte
V05	Time	8 byte
V06	Item Number	2 byte
V07	Count	3 byte
V08	Net ($(. '$ omit) : for bar code	6 byte
V09	Total Net ('.' include)	9 byte

Menu-2303

Function	Manage Print Data	
Set Range$(1 \sim 2)$	Display Part	Meaning
	-1 Acc Value Cleared upon Printing	Accumulated value is cleared upon printing
	- 2_Acc Value Not Cleared upon Printing	Cleared when the clearing key is pushed

Menu-2304

Function	Set Print Line feed	
Set Range $(0 \sim 99)$	Display Part	Meaning
	Initial Value: 1 Line	Set a spacing between lines as the set value upon printing

Menu-2305

Function	Set Print Head Message		
Set Range	Display Part		Meaning
50 byte	message	Enter Message	

Note 1. A function entering the desired head message upon printing.
Menu-2306

Function	Set Printing Delay Time	
Set Range $(0 \sim 200)$	Display Part	
	$00 \times 10 \mathrm{~ms}$ Initial Value: $1 \times$ 10 ms	Issue print after 00×10ms

Menu-2307

Function	Set Print Condition	
Set Range$(1 \sim 3)$	Display Part	Meaning
	- 1_Print Only If Weight Value Is +	Print out only if the weight value is +
	- 2_Print Only If Weight Value Is-	Print out only if the weight value is -
	- 3_Print Regardless of Whether Weight Value is + /-	Print out regardless of whether the weight value is +/-

Menu-2308

Function	Set Print Out Condition (Printing condition)	
Set Range (1~2)	Display Part	Meaning
	口 1_Manual Print	Printed only if the print key is pushed
	व 2_Automatic Print	Printed automatically if the weight value is stabilized

Menu-2309: Printing Count Number

Function	Print Count Number	
Set Range $(1 \sim 3)$	Display Part	

7-5. Option Setting

Menu-2401: Option 1 Setting
Menu-2402: Option 2 Setting
Menu-2403: Option 3 Setting

Function	Option Card Selection (option card select)	
Set Range(1~8)	Display Part	Meaning
	- 1_no optiont	Option is not used
	- 2_Analog out	Analog Output V-out (0~10V) or l-out (4~20mA)
	$\begin{aligned} & \hline \text { O 3_Weighing } \\ & \text { Out }(4,6) \end{aligned}$	Weighing module Type 1 (4in-6out)
	- 4_Bod Out	BCD Out
	- 5_ZigBee/BT	ZigBee/Bluetooth
	- 6_USB(Serial)	RS232 to USB Conversion Card
	- 7_RS422/485	RS232 or RS485 Card
	- 8_Ethemet	Ethernet Card
	$\begin{aligned} & \hline \text { - 9_Weighing } \\ & \text { Out(}(8,10) \end{aligned}$	Weighing module Type 2 (8in - 10out)

Note 1. Ensure to affirm before purchasing the product since there may be a limitation for the option module that can be used depending on the program version.

Menu-2404

Function	Adjust the Zero Output upon Using Analog Out option		
Set Range	Display Part	Meaning	
	0000	0.000 mA,	
	$\mathbf{0}$	0V output	
	4000	4.000 mA,	

Menu-2405

Function	Adjust the Maximum Output upon Using Analog Out option	
Set Range	Display Part	Meaning
	10000	$10.000 \mathrm{~mA}, 4.16 \mathrm{~V}$ output
	20000	$20.000 \mathrm{~mA}, 8.33 \mathrm{~V}$ output
	24000	$24.000 \mathrm{~mA}, 10 \mathrm{~V}$ output

Menu-2406

Function	Maximum Output Weight Value upon Using Analog Out option	
Set Range	Display Part	Meaning
	1000	Maximum output at 1000 kg
	2000	Maximum output at 2000 kg

7-6. Hardware Set Function

Menu-2501

Function	Set Value Initialization	
Set Range$(1 \sim 2)$	Display Part	Meaning
	- 1 Set Value Initialized	No set values of the product are initialized to factory shipping state
	- 2_Set Value Initialization Executed	All set values of the product are initialized to factory shipping state

Menu-2502

Function	PC Connection	
PC and Data Communication	Display Part	Meaning
	PC Connection	Used when Item data or Setting data backup function is performed through PC

Menu-2503

Function	Set Date		
Numeric Key			
: Data			
Designation			

Menu-2504

Function	Set Time	
Numeric Key		
$:$Sata Designation	Display Part	Meaning
	11.30 .10	30 minutes and 10seconds past 11 o'clock in the moming

Menu-2505

Function	Set Password	
Set Range(1~2)	Display Part	Meaning
	- 1_Password Not Used upon Moving the Mode	Password entry is not used upon entering the setting mode
	- 2_Password Used upon Moving the Mode	Password entry is used upon entering the setting mode

Function	Set Password	
Set Range $(0 \sim 9999)$	Display Part	Meaning
	XXXX	4-digit number entered is used as the password

Menu-2506

Function	USB Back up Function	
Set Range $(1 \sim 2)$	Display Part	Meaning
	-1_Data Not Stored	Only the quantity of the stored Data is affirmed
	2_ 2_Data Stored	Data are stored in the USB memory

Note1. Data are stored in the following format upon Data Backup.

Hem_01	count 01
13.01 .01	$12: 00: 00$
Weight:	$10,000 \mathrm{~kg}$
Tare $:$	$5,000 \mathrm{~kg}$
Gross :	$15,000 \mathrm{~kg}$

Menu-2507

Function	Set LCD Bright	
Set Range (1~7)	Display Part	
	Set Value_1	LCD brightness 10\% Meaning
	Set Value_2	LCD brightness 30\%
	Set Value_3	LCD brightness 50\%
	Set Value_4	LCD brightness 70\%
	Set Value_5	LCD brightness 80\%
	Set Value_6	LCD brightness 90\%
	Set Value_7	LCD brightness 100\%

7-7. Relay Batching Function

Menu-2601

Function	External Input Setting Function (function external input set)				
Set Range(1~10)	Set Value	INPUT1	INPUT2	INPUT3	INPUT4
	- 1_Extlnput Type1	Zero	Tare	Tare Removed	Print
	- 2_Extlnput Type2	Zero	Tare/Tare Removed	Hold	Hold Cancelled
	-3_Extlnput Type3	Zero	Tare/Tare Removed	Subtotal	Print
	-4_Extlnput Type4	Zero	Hold	Hold Cancelled	Print
	-5_Extlnput Type5	Zero	Subtotal	Total	Print
	-6_ExtInput Type6	Zero	Tare	Tare Cancelled	Gross/Net Weight
	-7_Extlnput Type7	Zero	Tare/Tare Removed	Decision	Print
	-8_Extlnput Type8	Zero	Print	Start	Stop
	-9_Extlnput Type9	Start	Stop	Hold	Gross/Net Weight
	-10_Extlnput Type 10	Tare	Print	Hold	Stop

Menu-2602

Function	Set Relay Mode	
Set Range$(1 \sim 9)$	Display Part	Meaning
	- 1_Limit Mode1	Limit Mode 1 (Step 4 Contact Point A Output)
	-2_Limit Mode2	Limit Mode 2 (Fall and Weighing Decision)
	-3_Packer Mode1	Packer Mode 1 (Stepl4 Contact Point B Output)
	-4_Packer Mode2	Packer Mode 2 (Fall and Weighing Decision)
	-5_CheckerMode1	Checker Mode 1 (Step 5 Decision upon Weight Stabilization)
	-6_CheckerMode2	Checker Mode 2 (Step 3 Decision upon Weight Stabilization)
	- 7_CheckerMode3	Checker Mode 3 (Weight Level)
	-8_CheckerMode4	Checker Mode 4 (Indentation Management)
	-9_CheckerMode5	Checker Mode 5 (Weight Sorting)

Weighing Output Information per Mode

Weighing Output		OUT1	OUT2	OUT3	OUT4	OUT5	OUT6
1	Limit Mode 1	Step1	Step2	Step3	Step4	Completed	Zero
2	Limit Mode 2	Step1	Step2	Completed	Lower Limit	Upper Limit	Zero
3	Packer Mode1	Step1	Step2	Step3	Step4	Completed	Zero
4	Packer Mode 2	Step1	Step2	Completed	Lower Limit	Upper Limit	Zero
5	Checker Mode 1	Step1	Step2	Step3	Step4	Above Step4	Zero
6	Checker Mode 2	Step1 (LOW)	Step2 (HIGH)	Step3 (OK)	Lower LimitNG	Upper LimiNGG	Zero
7	Checker Mode 3	Step1	Step2	Step3	Step4	Above Step4	Zero
8	Checker Mode4	Step1 (LOW)	Step2 (HIGH)	Step 3(OK)	Lower LimitNG	Upper LimitG	Zero
9	Checker Mode5	Step1 (LOW)	Step2 (HIGH)	Step3 (OK)	Lower LimitNG	Upper LimitNG	Zero

Set Point Mapping Information per Mode

Set Point Mapping		SP1	SP2	SP3	SP4	SP5	SP6
1	Limit Mode 1	Step1	Step2	Step3	Step4		
2	Limit Mode 2	Step1	Step2		Fall Value	Upper Limit	Lower Limit
3	Packer Mode 1	Step1	Step2	Step3	Step4		
4	Packer Mode2	Step1	Step2		Fall Value	Upper Limit	Lower Limit
5	Checker Mode 1	Step1	Step2	Step3	Step4		
6	Checker Mode2	Step1 (LOW)	Step2 (HIGH)		Fall Value	Upper Limit	Lower Limit
7	Checker Mode 3	Step1	Step2	Step3	Step4		
8	Checker Mode4	Step1 (LOW)	Step2 (HIGH)		Fall Value	Upper Limit	Lower Limit
9	Checker Mode5	Step1 (LOW)	Step2 (HIGH)		Fall Value	Upper Limit	Lower Limit

Note 1. See the above Table for Set Point Values applied for each weighing per mode.
<Limit mode 1>
Relay Operation Graph upon Setting No. 1 of Menu 2-06-02

Note.

1. Required set value input: Step4> Step3> Step2 $>$ Step1
2. Near zero output is according to the specified range in F57.
3. T1: Refer to F52 (Delay time of weighing Finish relay output)

T2: Refer to F53 (Operation time of weighing Finish relay output)
4. Relay Output

SP1: ON when the set value of Step1 is reached
SP2: ON when the set value of Step2 is reached
SP3: ON when the set value of Step3 is reached
SP4: ON when the set value of Step4 is reached
Finish: ON after T1(set time), ON for the during of T2 (set time)
Near Zero: F57 set value ≥ 0 range output

5. Stepl ${ }^{`} 4(\mathrm{SP} 1-4) \cdot \mathrm{s}$ status lamp in the front panel is operated in the same manner as the RELAY output.
<Limit mode 2>
Relay Operation Graph upon Setting No. 2 of Menu 2-06-02

Note.

1. Set value input requirement: Step2-Free Fall $>$ Step1
2. Near zero output is according to the specified range in F57.
3. T1: Refer toF52 (Delay time of weighing Finish relay output)

T2: Refer to F53 (Operation time of weighing Finish relay output)
T5: Refer to F56(Operation(ON) time of Weighing NG relay output)
4. Relay Output

SP1: ON when the set value of Step1 is reached
SP2: ON when the set value of Step1 - free fall is reached
Finish: Onafter T1 (set time), ON after T2 (set time)
Lowest Limit NG: Upon weighing finish, ON when lower than the set value of Step2 - Lowest Limit NG
Upper Limit NG: Upon weighing finish, ON when higher than the set value of Step2 + Upper Limit NG Near zero: F57 set value ≥ 0 range output

5. SP1,2 's status lamps in the front panel are operated in the same manner as the RELAY output.

<Packer Mode 1>

Relay Operation Graph upon Setting No. 3 of Menu 2-06-02

Note.

1. Required set value input: Step4>Step3>Step2>Step1
2. Near zero output is according to the specified range in F57.
3. T1: Refer to F52 (Delay time of weighing Finish relay output)

T2: Refer to F53 (Operation time of weighing Finish relay output)
4. Relay Output

SP1: ON when the set value of Step1 is reached
SP2: ON when the set value of Step2 is reached
SP3: ON when the set value of Step3 is reached
SP4: ON when the set value of Step4 is reached
Finish: ON after T1(set time), ON for the during of T2 (set time)
Near Zero: F57 set value ≥ 0 range output

5. SP 1-4 's status lamps in the front panel are operated in the same manner as the RELAY output.

<Packer Mode 2>

Relay Operation Graph upon Setting No. 4 of Menu 2-06-02

Note.

1. Set value input requirement: Step2-Free Fall $>$ Step1
2. Near zero output is according to the specified range in F57.
3. T1: Refer to F52 (Delay time of weighing Finish relay output)

T2: Refer to F53 (Operation time of weighing Finish relay output)
T5: Refer to F56 (Operation(ON) time of weighing NG relay output)
4. Relay Output

SP1: ON when the set value of Step1 is reached
SP2: ON when the set value of Step2- free fall is reached
Finish: On after T1 (set time), ON after T2 (set time)
Lower Limit NG: ON when smaller than the value of Step2 - Free Fall
Lowest Limit NG: Upon weighing finish, ON when lower than the set value of Step2 - Lowest Limit NG Upper Limit NG: Upon weighing finish, ON when higher than the set value of Step2 + Upper Limit NG

5. SP1-2 ‘s status lamps in the front panel are operated in the same manner as the RELAY output.

<Checker mode1>

Relay Operation Graph upon Setting No. 5 of Menu 2-06-02

Note.

1. Required set value input: Step4 $>$ Step3) $>$ Step2) $>$ Step1
2. Near zero output is according to the specified range in F57.
3. T3: Refer to F54 (Delay time of judgment-relay output)

T4: Refer to F55 (Operation time of judgment-relay output)
4. Relay Output

SP1: Near Zero $<$ Stable Weight \leq Step1
SP2: Step1 $<$ Stable Weight \leq Step2
SP3: Step2 $<$ Stable Weight \leq Step3
SP4: Step3 $<$ Stable Weight \leq Step4
Above SP4: Stable Weight \leq Above Step4
Near Zero: F57 Set Value \geq 0 range output

5. SP 1-4's status lamps in the front panel are operated in the same manner as the RELAY output.

<Checker mode2>

Relay Operation Graph upon Setting No. 6 of Menu 2-06-02

Note.

1. Required set value input: Step2>Step1
2. Near zero output is according to the specified range in F57.
3. T3: Refer to F54 (Delay time of judgment-relay output)

T4: Refer to F55 (Operation time of judgment-relay output)
T5: Refer to F56 (Operation(ON) time of weighing NG relay output)
4. Relay Output

SP1(LOW): ON when the weight is stable and below the set value of Step1
SP2(HIGH): ON when the weight is stable and over the set value of Step2
SP3(OK): ON when the weight is stable and in between Step 1 SStep2
Lowest Limit NG: ON during SP1 Output, adjust Output Time on T5
Upper Limit NG: ON during SP2 Output, adjust Output Time on T5
Near Zero: F57 Set Value ≥ 0 Range Output

5. SP 1-4's status lamps in the front panel are operated in the same manner as the RELAY output.

<Checker mode3>

Relay Operation Graph upon Setting No. 7 of Menu 2-06-02

Note.

1. Required set value input: Step4(SP4) $>$ Step3(SP3) $>$ Step2(SP2) $>$ Step1(SP1)
2. Near zero output is according to the specified range in F57.
3. Each output relay will output if it reaches the set value or is within the range
4. Relay Output

SP1: Output(operated) in between Near Zero and Step 1
SP2: Output(operated) in between Step 1 and Step 2
SP3: Output(operated) in between Step 2 and Step 3
SP4: Output(operated) in between Step 3 and Step 4
Above SP4: Output(operated) when over Step 4 value
Near Zero: F57 Set Value ≥ 0 Range Output

5. Stepl`4(SP 1-4)'s status lamp in the front panel is operated in the same manner as the RELAY output.

<Checker mode4>

Relay Openation Graph upon Setting No. 8 of Menu 2-06-02

Note.

1. Required set value input: Step2>Step1
2. Near zero output is according to the specified range in F57.
3. T3: Refer to F54 (Delay time of judgment-relay output)

T4: Refer to F55 (Operation time of judgment-relay output)
T5: Refer to F56(Operation(ON) time of weighing NG relay output)
4. This is the mode that judges via Hold Input
5. Relay Output

| SP1 (LOW): During Hold Input, ON when it is below the value of Step1 |
| :--- | :--- |
| SP2 (HIGH): During Hold Input, ON when it is over the set value of Step2. |
| SP3(OK): During Hold Input, ON when it is in between Step1 \leq Step2 |
| Lowest Limit NG: ON during Step1 Output, adjust Output Time on T5 |
| Upper Limit NG: ON during Step 2 Output, adjust Output Time on T5 |
| Near Zero: F57 Set Value ≥ 0 Range Output |

5. Stepl` ${ }^{\wedge}$ (SP 1-4)'s status lamp in the front panel is operated in the same manner as the RELAY output.

<Checker mode5>

Relay Operation Graph upon Setting No. 9 of Menu 2-06-02

Note.

1. Required set value input: Step $2>$ Step 1
2. Near zero output is according to the specified range in F57.
3. T3: Refer to F54 (Delay time of judgment-relay output)

T4: Refer to F55 (Operation time of judgment-relay output)
T5: Refer to F56 (Operation(ON) time of weighing NG relay output)
4.Relay Output

| SP1(LOW): During Judgment Input, ON when it is below the value of Step1 |
| :--- | :--- |
| SP2(HIGH): During Judgment Input, ON when it is over the set value of Step2 |
| SP3 (OK): During Judgment Input, ON when it is in between Step1 \leq Step2 |
| Lowest Limit NG: ON during Step1 Output, adjust Output Time on T5 |
| Upper Limit NG: ON during Step2 Output, adjust Output Time on T5 |
| Near Zero: F57 Set Value \geq 0 Range Output |

5. Stepl ${ }^{\wedge} 4($ SP 1-4)'s status lamp in the front panel is operated in the same manner as the RELAY output

Menu-2603

Function	Set Start Delay Time for completed Relay(T1)	
Set Range	Display Part	Meaning
$(0 \sim 99)$	Initial Value:	Delayed by $00 \times 0.1 \mathrm{Sec}$
	$10 \times 0.1 \mathrm{Sec}$	

Menu-2604

Function	Set Operating Duration Time for completed Relay(T2)	
Set Range	Display Part	Meaning
$(0 \sim 99)$	Initial Value:	Delayed by $00 \times 0.1 \mathrm{Sec}$
	$10 \times 0.1 \mathrm{Sec}$	

Menu-2605

Function	Set Start Delay Time for Decision Relay(T3)	
Set Range $(0 \sim 99)$	Display Part	Meaning
	Initial Value:	$10 \times 0.1 \mathrm{Sec}$

Menu-2606

Function	Set Operating Duration Time for Decision Relay(T4)	
Set Range	Display Part	Meaning
$(0 \sim 99)$	Initial Value:	Delayed by $00 \times 0.1 \mathrm{Sec}$
	$00 \times 0.1 \mathrm{Sec}$	

Menu-2607

Function	Set Operating Time for Weighing NG Relay(T5)	
Set Range	Display Part	Meaning
	Initial Value:	Delayed by $00 \times 0.1 \mathrm{Sec}$
	$00 \times 0.1 \mathrm{Sec}$	

8. RS-232C Interface in Detail

8-1. RS-232C Port Connection

(1) COM1 - RXD: Pin No. 2, TXD: Pin No. 3, GND: Pin No. 7

RXD	2 O
TXD	30
GND	70

9 pin port (male)
RS-232C port of CI-600

	O 2 Transmit Data
	03 Receive Data
	07 Signal Ground
\ulcorner	08 Carrier Detect
\vdash	O 20 Data Terminal Ready
ᄂ	06 Data Set Ready
ட	O 4 Request to Send
	05 Clear to Send
25 pin port (female) Serial port of the computer	

(2) COM2 - RXD: Pin No. 2, TXD: Pin No. 3, GND: Pin No. 7 (Option)

RXD	2 O
TXD	3 O
GND	7 O

9 pin port (male)
RS-232C port of CI-600

8-2. How to Connect an Auxiliary Display

8-3. How to Connect a Label Printer (DLP)

| RXD 2 O
 TXD 3 O
 GND 7 O |
| :--- | :--- |
| 9 pin port (male) |
| RS-232C port of CI-600 |

Note. Refer to page 38 (Set Mode) for RS-232C communication and setting method.

8-4. RS-422 \& 485 Serial Communications

RS-422 \& 485 transmit signals with the voltage difference, which are more stable for electric noises than other communication methods.

In addition, the AC Power Cable or other electric wires should be placed separately, and the shield cable (0.5Φ or more) dedicated to communications should be applied.

The recommended use distance is within 1.2 km .

- Setting output method

The same as RC232C before

- Signal Format and Data Format

The same as RC232C before

- 422 Connection Diagram -

- 485 Connection Diagram -

9. Serial Data Information

9-1. CAS 22Bytes Format

[^1]| Bt7
 1 | Bt6
 Stable | Bt5
 0 | Bt4
 Hold | Bt3
 Printer | Bt2
 Gross
 Weight | Bt1
 Tare | $\mathrm{Bt0}$
 ZeroPoint |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

9-2. CAS 10Bytes

(1)Code: ASCII (2) Transmission data format: (10 bytes)

Data(8 bytes)	CR	LF

9-3. AND 18bytes

(1) Code: ASCII (2) Transmission data format (18 bytes)

*Weight Date (8 byte)
a. 13.5kg : ',',',',',','1', '3', '.','5'
b. 135kg : ',' ',',',','1', '3', '5','"
c. -135kg : '-', ', ', ', ', '1', '3', '5','"

10. Appendix

Appendix 1>Command Mode 1 Description
CAS <NT-500 Command>

Indicator Reception	Function	Indicator Response
dd RWCRLF	Requestfor WeightData	Transmit the data in the setformat upon command input
dd MZCRLF	Same asZero Key	Execute the zero and retransmit dd MZCRLF to PC upon command input
ddMTCRLF	Same as Tare Key	Execute tare and retransmitddMTCRLF to PC upon
command input		

* dd : Device ID. (ASCII Code : 0×30 (hex), 0×31
(hex if the Device ID is "01")
* 00000,00 : Set value for upper limit/lower limit/upper limit fall/lower limit fall
(ASCII Code : 0x30(hex), 0x30(hex), 0x33(hex), 0x34(hex), 0×35 (hex) if the set value is " 00345 ")
* When it fails to execute the command : ! CR LF is transmitted to the computer.
* When there is an error in the command : ? CR LF is transmitted to the computer.

Appendix 2> Command Mode 2 Description

CAS <NT-570 Command>

Command data to NT-570A											Command description	NT-570A Respond
0	12	0	1	2	0	1	2	0	1	2		
D	ID	K	Z	CR	LF						ZEROkey	
D	ID	K	T	CR	LF						TARE key	Return the received
D	ID	K	G	CR	LF						GROSS key	Return the received
D	ID	K	N	CR	LF						NET key	Return the received
D	ID	K	S	CR	LF						START key	Return the received
D	ID	K	P	CR	LF						STOP key	Return the received
D	ID	K	B	CR	LF						Print key	Retum the received
D	ID	K	C	CR	LF						Total print key	Return the received
D	ID	K	W	CR	LF						Request weight data	Retum the received
D	ID	H	T	CR	LF						Request set point value	SendFormat 2
D	ID	S	1	0	0	0	0	0	CR	LF	$1^{\text {® }}$ Step value	Return the received
D	ID	S	2	0	0	0	0	0	CR	LF	2nd Step value	Return the received
D	ID	S	3	0	0	0	0	0	CR	LF	3rdStep value	Retum the received
D	ID	S	4	0	0	0	0	0	CR	LF	4th Step value	Return the received
D	ID	S	5	0	0	0	0	0	CR	LF	High limit value	Return the received
D	ID	S	6	0	0	0	0	0	CR	LF	Lowlimit value	Return the received
D	ID	H	E	0	0	0	0	0	CR	LF	Set point code(00-99)	Return the received

(D, ID:00-99, CR : 0×13, LF: 0×10, Command HC, HE range $=00 \sim 99$)

* Format 1 : PC send set point all data to indicator NT-580A

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
D	ID		H	A	Setpoint code					,	Zero Band					,	Optional-		
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
Preli		,	Preliminary					,	Final value					,	FreeFall				
40	41	42	43	44	45	46	47	48	49	50	51	52	53						
,	High limit					,	Low limit					CR	LF						

* Format 2 : Recieve the request data from PC then response of Indicator

* Please input without the decimal point.

Appendix 3> Command Mode 3 Description

CI-5000 : Transmission only if data is requested (1 byte communication)

Appendix 4> ASCII Table

CHA	CODE										
Space	32	0	48	@	64	P	80	-	96	p	112
!	33	1	49	A	65	Q	81	a	97	q	113
"	34	2	50	B	66	R	82	b	98	r	114
\#	35	3	51	C	67	S	83	c	99	S	115
\$	36	4	52	D	68	T	84	d	100	t	116
\%	37	5	53	E	69	U	85	e	101	u	117
\&	38	6	54	F	70	V	86	f	102	v	118
‘	39	7	55	G	71	W	87	g	103	W	119
(40	8	56	H	72	X	88	h	104	X	120
)	41	9	57	I	73	Y	89	1	105	y	121
*	42	:	58	J	74	Z	90	j	106	Z	122
+	43	;	59	K	75	[91	k	107	\{	123
,	44	$<$	60	L	76	1	92	1	108	\|	124
-	45	$=$	61	M	77]	93	m	109	\}	125
.	46	>	62	N	78	\wedge	94	n	110	\sim	126
1	47	?	63	O	79	-	95	0	111	End	255

Appendix 5> ANALOG OUT(0~10V) INTERFACE

This is an Option for transmitting the weight values displayed in the external apparatus(Recoder, PLC control center etc.) adjusted by Analog signal in Voltage out or Current-out.

- SPECIFICATIONS

Output	Precision	Max. Load Impedance	
V-OUT	$0 \sim 10 \mathrm{~V}(\mathrm{DC})$	Higher than $1 / 1000$	-
I-OUT	$0 \sim 24 \mathrm{~mA}$	Higher than $1 / 1000$	500Ω MAX

V-out Equivalent Circuit

I-out Equivalent Circuit

※ V-out output puts out ANALOG voltages($0 \sim 10 \mathrm{~V}$) proportional to the signal input displaying the weight.
※ 1 -out output is adjusted so as to be 4 ma when the weight display is 0 , and 20 mA when it is the maximum load.

- Since the Lo(-) terminal is not GND, it should not be connected to GND Line or Body GND of some other equipment or similar apparatus.

- ADJUST

1. Adjust M2404, M2405 if the range of the output values needs to be adjusted.

11. Error Message

11-1. Error Message from the Weight Setup Mode

Error	Cause	Solution
Err 20	The resolution was set in excess of the tolerance $1 / 10,000$.	Lower the resolution. As the resolution = maximum tolerance $/$ value of one division, adjust the resolution to $1 / 10,000$ or less by correcting either the maximum allowable weight in CAL 1 or the value of one division in CAL3 in the weight setup mode.
Err 21	The resolution was set in excess of the tolerance $1 / 30,000$.	Lower the resolution. As the resolution = maximum tolerance $/$ value of one division, adjust the resolution to $1 / 30,000$ or less by correcting either the maximumallowable weight in CAL1 or the value of one division inCAL3 in the weight setup mode.
Err 22	The weight for the span adjustment was set to less than 10% of the maximum capacity.	Set the weight to 10% or more of the maximum capacity (set in CAL1) fromCAL4 in the weight setup mode.
Err 23	The weight for the span adjustment was set to more than 100% of the maximum capacity.	Set the weight within the maximum capacity (set in CAL 1) from CAL4 in the weight setup mode.
Err 24	Too low span.	Set the weight again by lowering the resolution as the setting of the current resolution is not possible because of either abnormality or lower output in the load cell. Two low weight for PCS and percent sample.
Err 25	Too high span.	There is either any abnomality or too high output in the load cell. Execute steps from the zeroing step in CAL4 in the weight set up again. Two high weight for PCS and percent sample.
Err 26	Too high zero point.	Check whether or not the load tray is empty. Retry the weight setup after check at the test mode 3 .
Err 27	Too low zero point.	Set the weight setting again after confirming what force is given to the load tray of the scale in the test mode 3 .
Err 28	Weight is shaking.	Check the connection of the load cell connector.

11-2. Error Message from the Weighing Mode

Error	Cause	Solution
Err 01	The initialization of the scale cannot be done because of the shaking weight.	Tum on the power after placing the scale at a flat place with no vibration.
Err 02	Either the connection of load cell is wrong or there is abnormality in the A / D conversion section.	Check the connection between the load tray and the body.
Err 08	The zero key, tare key and start key were disabled at the instable weight.	Set the zero key, tare key and start key to the proper user conditions at F14 in the Set Mode.
Err 09	The current weight is out of the range of zero point.	Set the range of operations for the zero key to within 2% or 10% at F13 in the Set Mode.
Err 10	The tare to set is out of the maximum weight of the scale.	Set the tare to less than the maximum weight.
Err 12	The type of the configured printer is one that cannot support the total print.	DLP printers cannot make the total print. Set "F40" to '2' when DEP printers are used.
Err 13	The set value of zero point on the weight setting is out of range.	Check the status of the load tray and set the weight again.
Err 15	The range exceeded during setting the item code in the command mode.	Check the range of item code.
999999	The current weight on the load tray is too heavy and out of the allowable tolerance.	Avoid any weight in excess of the maximum allowable limit on the scale. If the load cell is damaged, it should be replaced.

MEMO

MEMO

Weighing Indicator

CAS BLDG., \# 440-1, SUNGNAE-DONG,
GANGDONG-GU, SEOUL, KOREA
TEL 82222253500
FAX_ 8224754668
www.globalcas.com

[^0]: Status Indication : Zero, Tare, Net, Gross, Hold, Tx, Rx

[^1]: \square Device ID: Send ing1 byte of device ID to selectively receive the information from the indicator to the receiver.
 (Device ID is set in F26.)

 - Data (8 bytes): When the weight date including a decimal, for example, $13.5 \mathrm{~kg}, 8$ bytes of ASCII code corresponding to 0 ', 0 ', 0 ', ' 0 ', ' 1 ', ' 3 ', ', 'and' 5 ' are sent.
 - Lamp Status Byte

